Bibliography#
- AM07
Ryan Prescott Adams and David JC MacKay. Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742, 2007.
- ALTdJ+23
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai. Gqa: training generalized multi-query transformer models from multi-head checkpoints. arXiv preprint arXiv:2305.13245, 2023.
- BPC20
Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: the long-document transformer. arXiv preprint arXiv:2004.05150, 2020.
- CGRS19
Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.
- DCL21
Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: pure attention loses rank doubly exponentially with depth. In International Conference on Machine Learning, 2793–2803. PMLR, 2021.
- GG16
Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: representing model uncertainty in deep learning. In international conference on machine learning, 1050–1059. PMLR, 2016.
- GIG17
Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In International conference on machine learning, 1183–1192. PMLR, 2017.
- Gal86
Francis Galton. Regression towards mediocrity in hereditary stature. The Journal of the Anthropological Institute of Great Britain and Ireland, 15:246–263, 1886.
- Gre03
William H Greene. Econometric analysis. Pearson Education India, 2003.
- Gun22
Gregory Gundersen. Bayesian online changepoint detection. 2022. URL: https://gregorygundersen.com/blog/2019/08/13/bocd/.
- HZRS16
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–778. 2016.
- HBL22
Yuzi He, Keith A Burghardt, and Kristina Lerman. Leveraging change point detection to discover natural experiments in data. EPJ Data Science, 11(1):49, 2022.
- HHuszarGL11
Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.
- JSM+23
Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, and others. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.
- KC15
Taehoon Kim and Jaesik Choi. Reading documents for bayesian online change point detection. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1610–1619. 2015.
- LXT+18
Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of neural nets. Advances in neural information processing systems, 2018.
- LWLQ22
Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI Open, 2022.
- Mur12
Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.
- NW87
Whitney K Newey and Kenneth D West. Hypothesis testing with efficient method of moments estimation. International Economic Review, pages 777–787, 1987.
- PY09
Pierre Perron and Tomoyoshi Yabu. Testing for shifts in trend with an integrated or stationary noise component. Journal of Business & Economic Statistics, 27(3):369–396, 2009.
- SAL+23
Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: enhanced transformer with rotary position embedding. Neurocomputing, pages 127063, 2023.
- VSP+17
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 2017.
- Whi14
Halbert White. Asymptotic theory for econometricians. Academic press, 2014.
- Woo10
Jeffrey M Wooldridge. Econometric analysis of cross section and panel data. MIT press, 2010.
- Woo15
Jeffrey M Wooldridge. Introductory econometrics: A modern approach. Cengage learning, 2015.
- ZS19
Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Information Processing Systems, 2019.
- ZHZ+20
Bin Zuo, Zhaolu Hou, Fei Zheng, Lifang Sheng, Yang Gao, and Jianping Li. Robustness assessment of the rsd t-test for detecting trend turning in a time series. Earth and Space Science, 7(5):e2019EA001042, 2020.
- ZLSZ19
Bin Zuo, Jianping Li, Cheng Sun, and Xin Zhou. A new statistical method for detecting trend turning. Theoretical and Applied Climatology, 138(1):201–213, 2019.